Forthcoming projects such as DES, LSST, WFIRST, and Euclid aim to measure weak lensing shear correlations with unprecedented precision, constraining the dark energy equation of state at the percent level. Reliance on photometrically-determined redshifts constitutes a major source of uncertainty for these surveys. Additionally, interpreting the weak lensing signal requires a detailed understanding of the nonlinear physics of gravitational collapse. We present a new analysis of the stringent calibration requirements for weak lensing analyses of future imaging surveys that addresses both photo-z uncertainty and errors in the calibration of the matter power spectrum. We find that when photo-z uncertainty is taken into account the requirements on the level of precision in the prediction for the matter power spectrum are more stringent than previously thought. Including degree-scale galaxy clustering statistics in a joint analysis with weak lensing not only strengthens the survey's constraining power by ∼ 20%, but can also have a profound impact on the calibration demands, decreasing the degradation in dark energy constraints with matter power spectrum uncertainty by a factor of 2 − 5. Similarly, using galaxy clustering information significantly relaxes the demands on photo-z calibration. We compare these calibration requirements to the contemporary state-of-the-art in photometric redshift estimation and predictions of the power spectrum and suggest strategies to utilize forthcoming data optimally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.