In the last two decades, a vast variety of topological phases have been described, predicted, classified, proposed, and measured. While there is a certain unity in method and philosophy, the phenomenology differs wildly. This work deals with the simplest such case: fermions in one spatial dimension, in the presence of a symmetry group G, which contains anti-unitary symmetries. A complete classification of topological phases, in this case, is available. Nevertheless, these methods are to some extent lacking as they generally do not allow to determine the class of a given system easily. This paper will take up proposals for non-local order parameters defined through anti-unitary symmetries. They are shown to be homotopy invariants on a suitable set of ground states. For matrix product states, an interpretation of these invariants is provided: in particular, for a particle–hole symmetry, the invariant determines a real division super algebra [Formula: see text] such that the bond algebra is a matrix algebra over [Formula: see text].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.