The recent outbreak of Escherichia coli O157:H7 infection associated with contaminated spinach led to an investigation of the role of insects, which frequent fields of leafy greens and neighboring rangeland habitats, in produce contamination. Four leafy greens fields adjacent to cattle-occupied rangeland habitats were sampled using sweep nets and sticky traps. Agromyzid flies, anthomyiid flies, and leafhoppers were caught consistently in both rangeland and leafy greens production fields at all sites. An unexpected number of flies (n = 34) in the Muscidae and Calliphoridae families (known as filth flies because of their development in animal feces) were caught in one leafy greens field. A subset of these filth flies were positive (11 of 18 flies) for E. coli O157:H7 by PCR amplification using primers for the E. coli O157:H7-specific eae gene. Under laboratory conditions, house flies were confined on manure or agar medium containing E. coli O157:H7 tagged with green fluorescent protein (GFP) and then tested for their capacity to transfer the microbes to spinach plants. GFP-tagged bacteria were detected on surfaces of 50 to 100% of leaves examined by fluorescence microscopy and in 100% of samples tested by PCR. These results indicate that flies are capable of contaminating leafy greens under experimental conditions and confirm the importance of further investigation of the role of insects in contamination of fresh produce.
Filth flies are known mechanical vectors of pathogenic bacteria in hospital and restaurant settings, but their role as vectors for disseminating microbes to plants has not been demonstrated. Escherichia coli O157:H7 deposition by flies onto spinach was studied using molecular, microbiological, and microscopy techniques. Relative quantitative polymerase chain reaction studies showed that bacteria acquired by flies from contaminated cattle manure and deposited in regurgitation spots on leaves survived and multiplied. Scanning electron microscopy of the regurgitation spots of flies exposed to manure inoculated with E. coli suggested the multiplication of bacteria-like organisms within the spots. This finding implies that the bacteria were active and is consistent with a hypothesis that regurgitation spots serve as a nutrition source allowing E. coli O157:H7 to survive on the spinach phylloplane. E. coli O157:H7 persisted on fly body surfaces up to 13 days after exposure to acquisition sources, suggesting that fly cuticular surfaces are conducive to the growth of this pathogen. These results are consistent with the hypothesis of bioenhanced transmission of human pathogens by house flies and suggest that filth flies may affect the microbial safety of fresh produce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.