Edge computing is a new development paradigm that brings computational power to the network edge through novel intelligent end-user services. It allows latency-sensitive applications to be placed where the data is created, thus reducing communication overhead and improving security, mobility and power consumption. There is a plethora of applications benefiting from this type of processing. Of particular interest is emerging edge-based image classification at the microscopic level. The scale and magnitude of the objects to segment, detect and classify are very challenging, with data collected using order of magnitude in magnification. The required data processing is intense, and the wish list of end-users in this space includes tools and solutions that fit into a desk-based device. Taking heavy-lift classification models initially built in the cloud to desk-based image analysis devices is a hard job for application developers. This work looks at the performance limitations and energy consumption footprint in embedding deep learning classification models in a representative edge computing device. Particularly, the dataset and heavy-lift models explored in the case study are phytoplankton images to detect Harmful Algae Blooms (HAB) in aquaculture at early stages. The work takes a deep learning model trained for phytoplankton classification and deploys it at the edge. The embedded model, deployed in a base form alongside optimised options, is submitted to a series of system stress experiments. The performance and power consumption profiling help understand system limitations and their impact on the microscopic grade image classification task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.