We have used eight pairs of simple sequence repeat (SSR) primers to analyse the genetic diversity in 130 individuals of coconut (Cocos nucifera L.) comprising 75 tall individuals and 55 dwarf individuals, representing 94 different coconut ecotypes throughout the world. A total of 51 alleles were detected, with an average of 6.4 alleles per locus. Fifty alleles were detected in tall coconuts (talls; mean alleles/locus 6.3) compared with only 26 (mean/locus 3.3) in dwarfs, and the average diversity value in talls (0.589) was also significantly higher than that in dwarfs (0.348). Using the eight SSRs we were able to uniquely discriminate 116 of the 130 individuals. A phenetic tree based on DAD (absolute distance) values clustered individuals into five groups, each mainly composed of either talls or dwarfs. These results provide evidence in support of previous hypotheses concerning the dissemination of coconut, as well as important new information for conservation and breeding purposes.
PCR-based DNA profiling of coconut palms indigenous to Sri Lanka was conducted using amplified fragment length polymorphism (AFLPs). A total of 322 amplification products were generated from the 42 genotypes with eight pairs of primers (EcoRI and MseI). Overall most variation was detected in the tall (Typica) rather than the intermediate (Aurantiaca) and dwarf (Nana) forms. A hierarchical analysis of molecular variance (AMOVA) was used to quantify and partition levels of variability into between- and within-form components. This revealed that for the inbreeding dwarf and intermediate forms most variation was observed between, rather than within, forms. In contrast, the outbreeding tall forms exhibited as much variation within as between forms. These observations have important implications for the maintenance and collection of coconut germplasm. This study also provided insights into the genetic (as opposed to phenotypic) relatedness of coconut accessions. Morphologically the Aurantiaca group of accessions are considered to be intermediate between the tall and dwarf accessions. Estimation of genetic relatedness based on AFLP analysis identified the Aurantiaca group as being more similar to the dwarf rather than the tall group. In addition, putative duplicate accessions were identified in the Aurantiaca group. Information emerging from this study will facilitate the management of coconut germplasm and optimise the choice of genetically divergent parents for crossing.
A study has been made of the ionic relations of stomata of Aster tripolium L., a maritime halophyte which colonizes coastal saltmarshes. The results obtained allow us to add this species to the growing list for which an involvement of K+ transport in stomatal movements has been demonstrated. However, an additional and ecologically important characteristic was found: there was a suppression of stomatal opening by increasing NaCl concentrations. A new hypothesis is offered of the mechanism for controlling salt and water relations in A. tripolium, a species which does not possess glands or other means of excreting salt. It is suggested that when the capacity of the tissues to accumulate salt in cell vacuoles is exceeded, the concentration of Na+ ions in the apoplast around the guard cells begins to rise. This causes partial stomatal closure, reduces transpiration and increases water‐use‐efficiency. Therefore, the flow of salt into the leaves is reduced but growth (and the manufacture of the new photosynthates required to support it) can continue. Aster tripolium can be added to the small list of known species which readily yield isolated epidermis suitable for detailed stomatal studies. Throughout this study, we have compared its stomatal physiology with C. communis, which has been thoroughly investigated in the past.
Anther culture was used to obtain dihaploid (DH) coconut plants and their ploidy level was determined by flow cytometric analysis. Simple sequence repeat (SSR) marker analysis was conducted to identify the homozygous diploid individuals. Ploidy analysis showed that 50% of the tested plantlets were haploid and 50% were diploid. Polymorphic fragments of the mother palm and their segregation patterns in anther-derived plantlets were used to determine the origin of the diploid plantlets. Using a diagnostic SSR marker (CNZ43), all the diploid plantlets tested were identified as being derived from microspores (i.e. were homozygous) and were thus candidates for use in coconut breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.