Abstract. We consider a model of surface-mediated diffusion with alternating phases of pure bulk and surface diffusion. For this process, we compute the mean exit time from a disk through a hole on the circle. We develop a spectral approach to this escape problem in which the mean exit time is explicitly expressed through the eigenvalues of the related self-adjoint operator. This representation is particularly well suited to investigate the asymptotic behavior of the mean exit time in the limit of large desorption rate λ. For a point-like target, we show that the mean exit time diverges as √ λ. For extended targets, we establish the asymptotic approach to a finite limit. In both cases, the mean exit time is shown to asymptotically increase as λ tends to infinity. We also revise the optimality regime of surface-mediated diffusion. Although the presentation is limited to the unit disk, the spectral approach can be extended to other domains such as rectangles or spheres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.