This paper presents an accurate indoor localisation approach to provide context aware support for Activities of Daily Living. This paper explores the use of contemporary wearable technology (Google Glass) to facilitate a unique first-person view of the occupants environment. Machine vision techniques are then employed to determine an occupant's location via environmental object detection within their field of view. Specifically, the video footage is streamed to a server where object recognition is performed using the Oriented Features from Accelerated Segment Test and Rotated Binary Robust Independent Elementary Features algorithm with a K-Nearest Neighbour matcher to match the saved keypoints of the objects to the scene. To validate the approach, an experimental setup consisting of three ADL routines, each containing at least ten activities, ranging from drinking water to making a meal were considered. Ground truth was obtained from manually annotated video data and the approach was subsequently benchmarked against a common method of indoor localisation that employs dense sensor placement. The paper presents the results from these experiments, which highlight the feasibility of using off-the-shelf machine vision algorithms to determine indoor location based on data input from wearable video-based sensor technology. The results show a recall, precision, and F-measure of 0.82, 0.96, and 0.88 respectively. This method provides additional secondary benefits such as first person tracking within the environment and lack of required sensor interaction to determine occupant location.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.