Electron transfer, under conditions of weak interaction and a medium acting as a passive thermal bath, is very well understood. When electron transfer is accompanied by transient chemical bonding, such as in interfacial coordination electrochemical mechanisms, strong interaction and molecular selectivity are involved. These mechanisms, which take advantage of "passive self-organization," cannot yet be properly described theoretically, but they show substantial experimental promise for energy conversion and catalysis. The biggest challenge for the future, however, may be dynamic, self-organized electron transfer. As with other energy fluxes, a suitable positive feedback mechanism, through an active molecular environment, can lead to a (transient) decrease of entropy equivalent to an increase of molecular electronic order for the activated complex. A resulting substantial increase in the rate of electron transfer and the possibility of cooperative transfer of several electrons (without intermediates) can be deduced from phenomenological theory. The need to extend our present knowledge may be derived from the observation that chemical syntheses and fuel utilization in industry typically require high temperatures (where catalysis is less relevant), whereas corresponding processes in biological systems are catalyzed at environmental conditions. This article therefore focuses on interfacial or membrane-bound electron transfer and investigates an aspect that nature has developed to a high degree of perfection: self-organization.
The role of the potential of zero charge (PZC) and of the potential of maximum adsorption Em during the adsorption of neutral molecules at the electrode surface is not yet well understood. The phase transition of the adsorbed molecules to a condensed state adds further complications. But under certain circumstances this process can be utilized to obtain additional information about the adsorbate system and the electrochemical double layer. On these grounds a new method for the determination of the potential of maximum adsorption in condensed layers is proposed. This method is based purely on a qualitative analysis of the shape of current-time transients, which change their sign at the potential of maximum adsorption and become inverted. From this datum and the corresponding capacity-potential curves of the adsorbate system and of the pure electrolyte one can construct the true charge-potential characteristics of the system and obtain the value of the PZC. This method was applied to the system thymine/mercury/ 0.1 M NaClO4. One result is that in this system the potential of maximum adsorption is a function of the temperature, the pH-value, and the prepolarization potential. This latter result can only be explained in terms of a kinetic argumentation.
Two-dimensional nonfaradaic phase transitions on solid electrodes
proceed via nucleation and growth processes.
Because of couplings and mutual influences of the condensation
process at the surface by the adsorption
process of the expanded phase from the bulk to the surface, the
modeling of the nucleation and growth
process presents a self-consistent problem. An alternative way to
solve this problem consists of iterated
differentiations of the convolution integral describing the phase
transition processes. Together with the balance
equation for the expanded phase one gets a closed system of four
differential equations, which can be solved
numerically for given initial conditions. On the basis of
numerical simulations the role of the double-layer
charging on the shape of current−time transients is discussed.
These predictions are proofed by experimental
data, measured in the system thymine/H2O/0.X M
NaCl04.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.