This paper describes character based elastic matching using local features for recognizing online handwritten data. Dynamic Time Warping (DTW) has been used with four different feature sets: x-y features, Shape Context (SC) and Tangent Angle (TA) features, Generalized Shape Context feature (GSC) and the fourth set containing x-y, normalized first and second derivatives and curvature features. Nearest neighborhood classifier with DTW distance was used as the classifier. In comparison, the SC and TA feature set was found to be the slowest and the fourth set was best among all in the recognition rate. The results have been compiled for the online handwritten Tamil and Telugu data. On Telugu data we obtained an accuracy of 90.6% with a speed of 0.166 symbols/sec. To increase the speed we have proposed a 2-stage recognition scheme using which we obtained accuracy of 89.77% but with a speed of 3.977 symbols/sec.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.