International audienceWe study the evolution of a pulse propagating in a normally dispersive fiber in the presence of Kerr nonlinearity. We review the temporal and spectral impact of optical wave-breaking in the development of a continuum. The impact of linear losses or gain is also investigated
We present simple scaling rules to optimize the design of 2R optical regenerators relying on Self-Phase Modulation in the normal dispersion regime and associated offset spectral filtering. A global design map is derived which relates both the physical parameters of the regenerator and the properties of the incoming signal to the regeneration performance. The operational conditions for optimum noise rejection are identified using this map and a detailed analysis of the system behavior under these conditions presented. Finally, we demonstrate application of the general design map to the design of a regenerator for a specific 160 Gb/s system.
We numerically and experimentally demonstrate that pulses with a parabolic intensity profile can be formed by passive reshaping of more conventional laser pulses using nonlinear propagation in a length of normally dispersive nonlinear fibre. Moreover, we show that the parabolic shape can be stabilised by launching these pulses into a second length of fiber with suitably different nonlinear and dispersive characteristics relative to the initial reshaping fiber.
We present a novel optical transmission system to experimentally demonstrate the possibility of mode division multiplexing. Its key components are mode multiplexer and demultiplexer based on a programmable liquid crystal on silicon panel, a prototype few-mode fiber, and a 4×4 multiple input multiple output algorithm processing the information of two polarization diversity coherent receivers. Using this system, we transmit two 100 Gb/s PDM-QPSK data streams modulated on two different modes of the prototype few-mode fiber. After 40 km, we obtain Q(2)-factors about 1 dB above the limit for forward error correction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.