Peptides have been identified in mammalian brain that are considered to be endogenous agonists for the delta (enkephalins) and kappa (dynorphins) opiate receptors, but none has been found to have any preference for the mu receptor. Because morphine and other compounds that are clinically useful and open to abuse act primarily at the mu receptor, it could be important to identify endogenous peptides specific for this site. Here we report the discovery and isolation from brain of such a peptide, endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has a high affinity (Ki = 360 pM) and selectivity (4,000- and 15,000-fold preference over the delta and kappa receptors) for the mu receptor. This peptide is more effective than the mu-selective analogue DAMGO in vitro and it produces potent and prolonged analgesia in mice. A second peptide, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), which differs by one amino acid, was also isolated. The new peptides have the highest specificity and affinity for the mu receptor of any endogenous substance so far described and they may be natural ligands for this receptor.
Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2, EM-1) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2, EM-2) are peptides recently isolated from brain that show the highest affinity and selectivity for the mu (morphine) opiate receptor of all the known endogenous opioids. The endomorphins have potent analgesic and gastrointestinal effects. At the cellular level, they activate G-proteins (35S-GTP gamma-S binding) and inhibit calcium currents. Support for their role as endogenous ligands for the mu-opiate receptor includes their localization by radioimmunoassay and immunocytochemistry in central nervous system regions of high mu receptor density. Intense EM-2 immunoreactivity is present in the terminal regions of primary afferent neurons in the dorsal horn of the spinal cord and in the medulla near high densities of mu receptors. Chemical (capsaicin) and surgical (rhizotomy) disruption of nociceptive primary afferent neurons depletes the immunoreactivity, implicating the primary afferents as the source of EM-2. Thus, EM-2 is well-positioned to serve as an endogenous modulator of pain in its earliest stages of perception. In contrast to EM-2, which is more prevalent in the spinal cord and lower brainstem, EM-1 is more widely and densely distributed throughout the brain than EM-2. The distribution is consistent with a role for the peptides in the modulation of diverse functions, including autonomic, neuroendocrine, and reward functions as well as modulation of responses to pain and stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.