This experiment compared Holstein-Friesian (HF) cows of New Zealand (NZ) origin representative of genetics present in the 1970s (NZ70; n = 45) and 1990s (NZ90; n = 60), and a group of HF cows of North American origin with 1990s genetics (NA90; n = 60), which were managed in grazing systems with a range of feeding allowances (4.5 to 7.0 t/cow per yr) over 3 yr. The NZ70 cows had the lowest Breeding Worth genetic index and the lowest breeding values for yields of fat, protein, and milk volume; the NZ90 and NA90 cows were selected to have similar breeding values for milk traits and were representative of cows of high genetic merit in the 1990s. The NZ90 cows had a higher milk protein concentration (3.71%) than either the NA90 (3.43%) or the NZ70 cows (3.41%), and a higher milk fat concentration (4.86%) than the NA90 cows (4.26%) with a level similar to the NZ70 cows (4.65%). The NZ90 cows produced significantly greater yields of fat, protein, and lactose than the NA90 and NZ70 cows. The NZ70 cows had the lowest mean annual body weight (473 kg) but the highest body condition score (BCS; 5.06). Days in milk were the same for the 2 NZ strains (286 d in milk), both of which were greater than the NA90 cows (252 d in milk). There was no genotype x environment interaction for combined milk fat and protein yield (milksolids), with NZ90 producing 52 kg/cow more than the NA90 at all feeding levels. The NZ70 strain had the highest seasonal average BCS (5.06), followed by the NZ90 (4.51) and the NA90 (4.13) strains on a 1 to 10 scale. Body condition score increased with higher feeding levels in the 2 NZ strains, but not in the NA strain. The first-parity cows commenced luteal activity 11 d later than older cows (parities 2 and 3), and the NA90 cows commenced luteal activity 4 and 10 d earlier than the NZ70 and NZ90 cows. Earlier estrus activity did not result in a higher in-calf rate. The NZ70 and NZ90 cows had similar in-calf rates (pregnancy diagnosed to 6 wk; 69%), which were higher than those achieved by NA90 cows (54%). Results showed that the NA90 strain used in this experiment was not suitable for traditional NZ grazing systems. Grazing systems need to be modified if the NA90 strain is to be successfully farmed in NZ. The data reported here show that the NA90 cows require large amounts of feed, but this will not prevent them from having a lower BCS than the NZ strains. Combined with poor reproductive performance, this means that NA90 cows are less productive than NZ HF in pasture-based seasonal calving systems with low levels of supplementation.
This study investigated the hypothesis that dairy heifers divergent in genetic merit for fertility traits differ in the age of puberty and reproductive performance. New Zealand's fertility breeding value (FertBV) is the proportion of a sire's daughters expected to calve in the first 42 d of the seasonal calving period. We used the New Zealand national dairy database to identify and select Holstein-Friesian dams with either positive (POS, +5 FertBV, n = 1,334) or negative FertBV (NEG, −5% FertBV, n = 1,662) for insemination with semen from POS or NEG FertBV sires, respectively. The resulting POS and NEG heifers were predicted to have a difference in average FertBV of 10 percentage points. We enrolled 640 heifer calves (POS, n = 324; NEG, n = 316) at 9 d ± 5.4 d (± standard deviation; SD) for the POS calves and 8 d ± 4.4 d old for the NEG calves. Of these, 275 POS and 248 NEG heifers were DNA parent verified and retained for further study. The average FertBV was +5.0% (SD = 0.74) and −5.1% (SD = 1.36) for POS and NEG groups, respectively. Heifers were reared at 2 successive facilities as follows: (1) calf rearing (enrollment to ~13 wk of age) and (2) grazier, after 13 wk until 22 mo of age. All heifers wore a collar with an activity sensor to monitor estrus events starting at 8 mo of age, and we collected weekly blood samples when individual heifers reached 190 kg of body weight (BW) to measure plasma progesterone concentrations. Puberty was characterized by plasma progesterone concentrations >1 ng/mL in at least 2 of 3 successive weeks. Date of puberty was defined when the first of these samples was >1 ng/mL. Heifers were seasonally bred for 98 d starting at ~14 mo of age. Transrectal ultrasound was used to confirm pregnancy and combined with activity data to estimate breeding and pregnancy dates. We measured BW every 2 wk, and body condition and stature at 6, 9, 12, and 15 mo of age. The significant FertBV by day interaction for BW was such that the NEG heifers had increasingly greater BW with age. This difference was mirrored with the significant FertBV by month interaction for average daily gain, with the NEG heifers having a greater average daily gain between 9 and 18 mo of age. There was no difference in heifer stature between the POS and NEG heifers. The POS heifers were younger and lighter at puberty, and were at a lesser mature BW, compared with the NEG heifers. As a result, 94 ± 1.6% of the POS and 82 ± 3.2% of the NEG heifers had reached puberty at the start of breeding. The POS heifers were 20% and 11% more likely to be pregnant after 21 d and 42 d of breeding than NEG heifers (relative risk = 1.20, 95% confidence interval of 1.03-1.34; relative risk = 1.11, 95% confidence interval of 1.01-1.16). Results from this experiment support an association between extremes in genetic merit for fertility base on cow traits and heifer reproduction. Our results indicate that heifer puberty and pregnancy rates are affected by genetic merit for fertility traits, and these may be useful phenotypes for genetic selection.
The aim of this research was to determine if circadian rhythms have an effect on time trial cycling performance of 15 min duration. Seven males (Mean+/-SD): age, 22.3+/-4.9 yr; height 179.0+/-7.9 cm, body mass 74.5+/-15.5 kg; VO2max 68.0+/-5.7 ml x kg(-1) x min(-1) who were all competitive cyclists or triathletes with previous experience in laboratory testing procedures volunteered to participate in this study. Each of the seven subjects underwent a series of four tests; one VO2 max test, and three 15 min maximal performance tests, at varying times during a 24 hr period. Testing times were at 08.00-10.00; 14.00-16.00 and 20.00-22.00 hours. Heart rate was recorded during the last 10-15 seconds of each minute and blood lactate levels were taken at 5 and 10 min during exercise and again immediately post-exercise. O2 consumption was measured continuously using open circuit spirometry. RPE was measured using the Borg scale at 5 and 10 min during, and again immediately following the completion of testing. Resting oral temperature was the only variable to show a significant time of day effect (p<0.05). Oral temperature during the afternoon was higher than both morning and evening results by 0.76 degrees C and 0.09 degrees C respectively. Total work (kJ) and average power output (W) were recorded at their highest during the morning session and reached a trough during the afternoon session, but these differences were not significant (p = 0.9997 and 0.9972 respectively). The results obtained in this study indicate that while certain biological rhythms are present, they appear to have no effect on this type of cycling performance. Although athletic performance may be enhanced by training programs that are compatible with an individuals body clock, the ability to perform and train at various times has an adaptive response which appears to over-ride these naturally inherent rhythms.
describes the effect that BW of replacement heifers has on accumulated milk yields without discriminating whether the increased milk yield came from greater survival or from greater production per surviving cow. Further research on the relationships between BW and survival of heifers is required to confirm whether the heavier heifers survived longer than the lighter heifers, but could explain why the relationship between BW and 3-parity milk yields was more curvilinear than the relationship between BW and firstlactation milk production. Holstein-Friesian heifers that were 450 kg in BW at 21 mo of age were estimated to produce 168 and 509 kg more ECM than 425-kg Holstein-Friesian heifers in first-lactation and 3-parity accumulated yields, respectively. A further increase in BW at 21 mo of age, from 450 to 475 kg, was estimated to result in 157 and 409 kg more ECM in firstlactation and 3-parity accumulated yields, respectively. Consequently, for heifers that were average and below average in BW, considerable milk production benefits would occur over the first 3 lactations by improving rearing practices to result in heavier heifers throughout the precalving phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.