We installed a source for ultracold neutrons at a new, dedicated spallation target at TRIUMF. The source was originally developed in Japan and uses a superfluid-helium converter cooled to 0.9 K. During an extensive test campaign in November 2017, we extracted up to 325 000 ultracold neutrons after a one-minute irradiation of the target, over three times more than previously achieved with this source. The corresponding ultracold-neutron density in the whole production and guide volume is 5.3 cm −3 . The storage lifetime of ultracold neutrons in the source was initially 37 s and dropped to 24 s during the eighteen days of operation. During continuous irradiation of the spallation target, we were able to detect a sustained ultracold-neutron rate of up to 1500 s −1 .Simulations of UCN production, UCN transport, temperature-dependent UCN yield, and temperature-dependent storage lifetime show excellent agreement with the experimental data and confirm that the ultracold-neutron-upscattering rate in superfluid helium is proportional to T 7 .
A6 Li glass based scintillation detector developed for the TRIUMF neutron electric dipole moment experiment was characterized using the ultra-cold neutron source at the Paul Scherrer Institute (PSI). The data acquisition system for this detector was demonstrated to perform well at rejecting backgrounds. An estimate of the absolute efficiency of background rejection of 99.7 ± 0.1% is made. For variable ultra-cold neutron rate (varying from < 1 kHz to approx. 100 kHz per channel) and background rate seen at the Paul Scherrer Institute, we estimate that the absolute detector efficiency is 89.7 +1.3 −1.9 %. Finally a comparison with a commercial Cascade detector was performed for a specific setup at the West-2 beamline of the ultra-cold neutron source at PSI.
Ultracold neutron (UCN) detectors using two visually very similar, to the microscopic level, pieces of optically contacted cerium doped lithium glasses have been proposed for high rate UCN experiments. The chief difference between the two glass scintillators is that one side is 6 Li depleted and the other side 6 Li doped. This note outlines a method to determine which side of the glass stack is doped with 6 Li using AmBe and 252 Cf neutron sources, and a Si surface barrier detector. The method sees an excess of events around the α and triton energies of neutron capture on 6 Li when the enriched side is facing the Si surface barrier detector.
This article describes the new primary proton beamline 1U at TRIUMF. The purpose of this beamline is to produce ultracold neutrons (UCN) for fundamental-physics experiments. It delivers up to 40 µA of 480 MeV protons from the TRIUMF cyclotron to a tungsten spallation target and uses a fast kicker to share the beam between the Center for Molecular and Materials Science and UCN. The beamline has been successfully commissioned and operated with a beam current up to 10 µA, facilitating first large-scale UCN production in Canada.
A fast-switching, high-repetition-rate magnet and power supply have been developed for and operated at TRIUMF, to deliver a proton beam to the new ultracold neutron (UCN) facility. The facility possesses unique operational requirements: a time-averaged beam current of 40 µA with the ability to switch the beam on or off for several minutes. These requirements are in conflict with the typical operation mode of the TRIUMF cyclotron which delivers nearly continuous beam to multiple users. To enable the creation of the UCN facility, a beam-sharing arrangement with another facility was made. The beam sharing is accomplished by the fast-switching (kicker) magnet which is ramped in 50 µs to a current of 193 A, held there for approximately 1 ms, then ramped down in the same short period of time. This achieves a 12 mrad deflection which is sufficient to switch the proton beam between the two facilities. The kicker magnet relies on a high-current, lowinductance coil connected to a fast-switching power supply that is based on insulated-gate bipolar transistors (IGBTs). The design and performance of the kicker magnet system and initial beam delivery results are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.