Free energy calculations for the transfer of a water molecule from the pure liquid to an interior cavity site in a protein are presented. Two different protein cavities, in bovine pancreatic trypsin inhibitor (BPTI) and in the I76A mutant of barnase, represent very different environments for the water molecule: one which is polar, forming four water-protein hydrogen bonds, and one which is more hydrophobic, forming only one water-protein hydrogen bond. The calculations give very different free energies for the different cavities, with only the polar BPTI cavity predicted to be hydrated. The corresponding entropies for the transfer to the interior cavities are calculated as well and show that the transfer to the polar cavity is significantly entropically unfavorable while the transfer to the nonpolar cavity is entropically favorable. For both proteins an analysis of the fluctuations in the positions of the protein atoms shows that the addition of a water molecule makes the protein more flexible. This increased flexibility appears to be due to an increased length and weakened strength of protein-protein hydrogen bonds near the cavity.
Magnesium transporter 1 (MAGT1) critically mediates magnesium homeostasis in eukaryotes and is highly-conserved across different evolutionary branches. In humans, loss-offunction mutations in the MAGT1 gene cause X-linked magnesium deficiency with Epstein-Barr virus (EBV) infection and neoplasia (XMEN), a disease that has a broad range of clinical and immunological consequences. We have previously shown that EBV susceptibility in XMEN is associated with defective expression of the antiviral natural-killer group 2 member D (NKG2D) protein and abnormal Mg 2؉ transport. New evidence suggests that MAGT1 is the human homolog of the yeast OST3/ OST6 proteins that form an integral part of the N-linked glycosylation complex, although the exact contributions of these perturbations in the glycosylation pathway to disease pathogenesis are still unknown. Using MS-based glycoproteomics, along with CRISPR/Cas9-KO cell lines, natural killer cell-killing assays, and RNA-Seq experiments, we now demonstrate that humans lacking functional MAGT1 have a selective deficiency in both immune and nonimmune glycoproteins, and we identified several critical glycosylation defects in important immune-response proteins and in the expression of genes involved in immunity, particularly CD28. We show that MAGT1 function is partly interchangeable with that of the paralog protein tumorsuppressor candidate 3 (TUSC3) but that each protein has a different tissue distribution in humans. We observed that MAGT1dependent glycosylation is sensitive to Mg 2؉ levels and that reduced Mg 2؉ impairs immune-cell function via the loss of specific glycoproteins. Our findings reveal that defects in protein glycosylation and gene expression underlie immune defects in an inherited disease due to MAGT1 deficiency.MAGT1 is an evolutionally conserved Mg 2ϩ -specific ion transport facilitator found in all animals and has been shown to participate in the multienzyme complex responsible for enzymatic coupling of N-glycans onto peptide substrates (1, 2). Null mutations in the MAGT1 gene lead to the rare primary immunodeficiency "X-linked immunodeficiency with Mg 2ϩ defect, Epstein-Barr virus (EBV) 7 infection and neoplasia" (XMEN) disease (3,4). Here, we explore these dual roles by examining cells from both healthy and MAGT1-deficient humans.Mg 2ϩ is the most abundant divalent cation in eukaryotic cells, with intracellular concentrations ranging from 15 to 20 mM depending on the cell type. Most Mg 2ϩ is tightly bound to cellular substituents, especially nucleic acids, nucleoside triphosphates, and enzymes. The unbound intracellular free Mg 2ϩ is estimated to be 0.4 -1.0 mM or ϳ1-5% of the total Mg 2ϩ concentration in the cell (5, 6), and because Mg 2ϩ is the biologically active form of Mg, these intracellular concentra-
A new method for performing molecular dynamics simulations with fluctuating charge polarizable potentials is introduced. In fluctuating charge models, polarizability is treated by allowing the partial charges to be variables, with values that are coupled to charges on the same molecule as well as those on other molecules. The charges can be efficiently propagated in a molecular dynamics simulation using extended Lagrangian dynamics. By making a coordinate change from the charge variables to a set of normal mode charge coordinates for each molecule, a new method is constructed in which the normal mode charge variables uncouple from those on the same molecule. The method is applied to the TIP4P-FQ model of water and compared to other methods for implementing the dynamics. The methods are compared using different molecular dynamics time steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.