We measure the center-of-mass diffusion of silica nanoparticles (NPs) in entangled poly(2-vinylpyridine) (P2VP) melts using Rutherford backscattering spectrometry. While these NPs are well within the size regime where enhanced, nonhydrodynamic NP transport is theoretically predicted and has been observed experimentally (2R NP /d tube ≈ 3, where 2R NP is the NP diameter and d tube is the tube diameter), we find that the diffusion of these NPs in P2VP is in fact well-described by the hydrodynamic Stokes−Einstein relation. The effective NP diameter 2R eff is significantly larger than 2R NP and strongly dependent on P2VP molecular weight, consistent with the presence of a bound polymer layer on the NP surface with thickness h eff ≈ 1.1R g . Our results show that the bound polymer layer significantly augments the NP hydrodynamic size in polymer melts with attractive polymer−NP interactions and effectively transitions the mechanism of NP diffusion from the nonhydrodynamic to hydrodynamic regime, particularly at high molecular weights where NP transport is expected to be notably enhanced. Furthermore, these results provide the first experimental demonstration that hydrodynamic NP transport in polymer melts requires particles of size ≳5d tube , consistent with recent theoretical predictions.
We report tensile testing and in situ X-ray scattering measurements of a homologous series of precise poly(ethylene-co-acrylic acid) copolymers (pxAA). The number of backbone carbons (x) between pendant acrylic acid groups along the polyethylene chain (x = 9, 15, 21) has a pronounced effect on both their tensile properties as well as their morphologies during deformation. The semicrystalline precise copolymer (p21AA) displays yielding behavior similar to polyethylene. Also, strain hardening in p21AA coincides with the originally isotropic acid-rich layered structures strongly aligning with acid layers perpendicular to the strain direction, demonstrating the facile nature of the H-bonding within the acid aggregates. When the alkyl spacer is only nine carbons (p9AA), the precise copolymer withstands strains of >1000% without failing, because the liquid-like assembly of acid aggregates permits the acid groups to exchange without developing substantial anisotropy in the structure. Both p21AA and p9AA maintain..
In this review we summarize recent efforts in understanding nano-aggregation in acid- and ion-containing polymer systems. The acid and ionic groups have specific interactions that drive aggregation and alter polymer behavior at the nano-, micro-, and bulk length scales. Advancements in synthetic methods, characterization techniques, and computer simulations have enabled researchers to better understand the morphologies and dynamics, particularly at the nanoscale. This overview of recent advancements in nano-aggregated polymer systems highlights the current understanding of the field and presents promising directions for future investigations and new applications.
We analyze the dynamics from microsecond-long, atomistic molecular dynamics (MD) simulations of a series of precise poly(ethylene-co-acrylic acid) ionomers neutralized with lithium, with three different spacer lengths between acid groups on the ionomers and at two temperatures. At short times, the intermediate structure factor calculated from the MD simulations is in reasonable agreement with quasi-elastic neutron scattering data for partially neutralized ionomers. For ionomers that are 100% neutralized with lithium, the simulations reveal three dynamic processes in the chain dynamics. The fast process corresponds to hydration librations, the medium-time process corresponds to local conformational motions of the portions of the chains between ionic aggregates, and the long-time process corresponds to relaxation of the ionic aggregates. At 600 K, the dynamics are sufficiently fast to observe the early stages of lithium-ion motion and ionic aggregate rearrangements. In the partially neutralized ionomers with isolated ionic aggregates, the Li-ion-containing aggregates rearrange by a process of merging and breaking up, similar to what has been observed in coarse-grained (CG) simulations. In the 100% neutralized ionomers that contain percolated ionic aggregates, the chains remain pinned by the percolated aggregate at long times, but the lithium ions are able to move along the percolated aggregate. Here, the ion dynamics are also qualitatively similar to those seen in previous CG simulations.
This paper presents the first findings on the molecular dynamics of the remarkable new class of linear and precisely functionalized ethylene copolymers. Specifically, we utilize broadband dielectric relaxation spectroscopy to investigate the molecular dynamics of linear polyethylene (PE)-based ionomers containing 1-methylimidazolium bromide (ImBr) pendants on exactly every 9th, 15th, or 21st carbon atom, along with one pseudorandom analogue. We also employed FTIR spectroscopy to provide insight into local ionic interactions and the nature of the ordering of the ethylene spacers between pendants. Prior X-ray scattering experiments revealed that the polar ionic groups in these ionomers self-assemble into microphase-separated aggregates dispersed throughout the nonpolar PE matrix. We focus primarily on the dynamics of the segmental relaxations, which are significantly slowed down compared to linear PE due to ion aggregation. Relaxation times depend on composition, the presence of crystallinity, and microphase-separated morphologies. Segmental relaxation strengths are much lower than predicted by the Onsager theory for mobile isolated dipoles but much higher than linear PE, demonstrating that at least some ImBr pendants participate in the segmental process. Analysis of the relaxation strengths using the Kirkwood g correlation factor demonstrates that ca. 10−40% of the ImBr ion dipoles (depending on copolymer composition and temperature) participate in the segmental motions of the precise ionomers under study, with the remainder immobilized or having net antiparallel arrangements in ion aggregates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.