Cutinase from Fusarium solani pisi is the model-system for a new approach to assess and enhance protein stability based on the use of synthetic triazine-scaffolded affinity ligands as a novel protein-stabilizing tool. The active site of cutinase is excluded from the main surface regions postulated to be involved in early protein's thermal unfolding events. Hence, these regions are suitable targets for binding complementary affinity ligands with a potential stabilizing effect. A random solid-phase combinatorial library of triazine-bisubstituted molecules was screened for binding cutinase by a rapid fluorescence-based method and affinity chromatography. The best binding substituents were combined with those previously selected by screening a rationally designed library. A second-generation solid-phase biased library was designed and synthesized, following a semi-rational methodology. A dual screening of this library enabled the selection of ligands binding cutinase with higher affinity while retaining its functionality. These compounds were utilized for thermostability assessment with adsorbed cutinase at 60 degrees C and pH 8.0. When bound to different types of ligands, the enzyme showed markedly distinct activity retention profiles, with some synthetic affinity ligands displaying a stabilizing effect on cutinase and others a clearly destabilizing effect, when compared with the free enzyme.
The protein surface is the interface through which a protein molecule senses the external world. The composition of this interface, in charged, polar and/or hydrophobic residues is crucial for both the activity and stability of the protein. Protein immobilization on surfaces has been extensively explored as one of the most effective approaches for stabilization. The mechanism of stabilization, however, is still poorly understood, and usually the success of any method is more a matter of trial and error rather than the result of rational concepts. The importance of local unfolding processes in a number of biologically significant processes has been recognized and attracted increasing attention. Unfolding regions have been localized in different proteins including the recombinant cutinase from Fusarium solani pisi. The study of three structural surface regions associated with early cutinase unfolding events was the basis for the approach followed in this work. A 64-member solid-phase combinatorial library of ligands was synthesized on a triazine-substituted agarose matrix using a modified 'mix and split' procedure. The combinatorial library was assessed for binding to cutinase from Fusarium solani pisi in a biologically active form. Four lead ligands (3/5, 3/7, 4/5, 4/7) have been selected in which immobilized cutinase presented a relative activity of 30-60% as compared to the free enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.