Fine-grained classification involves distinguishing between similar sub-categories based on subtle differences in highly localized regions; therefore, accurate localization of discriminative regions remains a major challenge. We describe a patch-based framework to address this problem. We introduce triplets of patches with geometric constraints to improve the accuracy of patch localization, and automatically mine discriminative geometrically-constrained triplets for classification. The resulting approach only requires object bounding boxes. Its effectiveness is demonstrated using four publicly available fine-grained datasets, on which it outperforms or achieves comparable performance to the state-of-the-art in classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.