Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
Good quality ZnO nanostructures were obtained by the microwave-assisted hydrothermal synthesis, at low reaction temperatures, using zinc acetate as the starting precursor. X-ray diffraction confirmed the crystallinity of the ZnO nanostructures, which resulted free of impurities. Field emission gun scanning electron microscopy analysis revealed that the ZnO nanostructures crystallized at 120 1C were more homogeneous and had a constant diameter along the entire wire length, exhibiting an ideal defect density that favors the gas sensing response. A new ozone gas sensor based on these nanostructures was evaluated at low exposure times (15 s) by recording the change in the film resistance. The ZnO nanostructures showed good sensitivity even at low ozone concentration (100 ppb), and fast response and short recovery time at 200 1C, demonstrating great potential for a variety of applications. Two main effects were observed: the first one is intrinsic to that of the sample, while the second is a consequence of the surface and interface complex cluster defects, which produce extrinsic defects.
Here we present an easy-reproducible microwave-assisted hydrothermal route for preparing pure nanocrystalline CeO 2 films. The produced materials were characterized using a wide range of techniques (X-ray diffraction, field emission gun scanning electron microscopy, Raman spectroscopy) to understand the synthesis dependent changes in crystallographic structure, and crystallite size. Raman and X-ray diffraction techniques revealed that the films were free of secondary phases and that they crystallize in the cubic structure. The observed hydrodynamic particle size larger than the crystallite size confirms the aggregation phenomenon. Gas sensing measurements have been carried out to rationalize the type and number of surface adsorbed groups and overall nanostructure.Electrical conductance variations, owing to gases adsorption onto semiconductor oxide films surfaces, were observed in this work. Chemiresistive CeO 2 film properties depend on the intergranular barrier heights and width.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.