It was shown that eight stages of transition are observed in the heating process of Spirulina platensis cells in temperature range 5-140 degrees C. The first stage covers the temperature range 5-53 degrees C with maximum approximately 45 degrees C. The heat evolved in this temperature range is equal to 380 +/- 20 J/g of dry biomass, it does not change at scanning rate lower than 0.083 degrees C/min and belongs, mainly, to cell respiration in a stationary regime, in the dark. It was shown that endotherm approximately 66 degrees C belongs to denaturation of C-phycocyanin which denaturates in solutions with Td = 64.2 degrees C, deltaHd = 34.7 +/- 2.1 J/g and for it deltaHd(cal)/deltaH(V.H) is equal to 10.8 +/- 1.2. The endotherms with Td equal to 58 and 88 degrees C are connected with denaturation of phycobilisome proteins and endotherm with Td = 48 degrees C and deltaHd = 4.2J/g of dry biomass-with denaturation of protein which, apparently, is connected with cell respiration.
The total value of heat (-Q) evolved by green-blue microalgae Spirulina platensis cells in a dark and stationary regime in the range of pH values 8.0-11.6 was determined. It was established that (-Q) reaches its maximum value at 360 +/- 40 J/g of dry biomass in the pH range 9.3-10.3 and then sharply dropped relative to these values and reached zero at pH 7.5 +/- 0.2 and 11.8 +/- 0.2. It is affirmed that an optimum regime for preservation of Spirulina platensis cell viability in a dark and stationary regime is pH range 9.3-10.3. It was also shown that the peak of heat evolution with maximum about 45 degrees C, reflecting mainly the respiration of cells (oxygen absorption rate), did not displace along the temperature scale at a change of pH from 9.3 to 10.4 and slightly displaced lower and higher of these values of pH. It is supposed that the thermostability of biomacromolecules and their complexes responsible for cell respiration does not depend on pH medium in pH range 9.3-10.3.
YBa2Cu307-a films synthesized laser sputtering MI the SrTiO, surface have been investigated experimentally. The hysteresis of the transport current is studied under the magnetic flux Yreezing'. It is found that the position d i n e criiicai curreni maximum in decreasing iieids does not depend a7 tile initial value of the 'frozen' magnetic field 1 il exceeds 1 T. In fieids lower than 1 T, the maximum is located in the region of small fields and tends to the limiting value characteristic of large fields, as the 'frozen' field increases. The concept of 'frozen' magnetic flux is used to interpret this phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.