Studying quantum properties of a system has been quite popular in quantum mechanics. One of the most important systems that are very crucial to the framework of quantum mechanics is the system of harmonic oscillator a system whose classical evolution is known to exhibit peculiar chaotic dynamics. We are motivated to investigate the behavior of quantum properties for a system with position and time dependent perturbed. Starting with Hamiltonian, we determined the equation of motion and obtained the wave function. The energy of the whole system using the operator ordering method was found. We show that the quantum mechanical picture alludes to a chaotic dynamics as expected. This is evidenced through the appearance of energy level crossings. An additional signature to this chaotic dynamics is observed in the transition of Eigen values from real to imaginary. We also show numerically that one can give the behavior of the system is Poincare section. By so doing we confirmed that increasing and decreasing the perturbation amplitude of the system becomes chaotic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.