The purpose of the study is to analyze the time‐fractional reaction‐diffusion equation with nonlocal boundary condition. The proposed model is used to predict the invasion of tumor and its growth. Further, we establish the existence and uniqueness of a weak solution of the proposed model using the Faedo‐Galerkin method and compactness arguments.
This article studies the existence and uniqueness of a weak solution of the time-fractional cancer invasion system with nonlocal diffusion operator. Existence and uniqueness results are ensured by adapting the Faedo-Galerkin method and some a priori estimates. Further, finite element numerical scheme is implemented for the considered system. Finally, various numerical computations are performed along with the convergence analysis of the scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.