1. We examined excitation and the facilitatory effect on the heat responses induced by histamine in visceral polymodal receptors with the use of the canine testis-spermatic nerve preparation in vitro. 2. The proportion of units that showed excitation (> 10 impulses 1 min after application of histamine was initiated) increased roughly with higher concentrations of histamine: 7% at 1 microM, 26% at 10 microM, 79% at 100 microM, and 61% at 1,000 microM. The discharge rate also increased with the concentration. 3. Histamine (100 and 1,000 microM) responses > 0.5 imp/s were observed only in units with conduction velocities (CVs) of < or = 10 m/s, but not in those with CVs faster than 10 m/s. On average, histamine-induced discharges were significantly greater in units with CVs of < or = 10 m/s at all concentrations > or = 10 microM. Thus units studied in this experiment were empirically divided into slow-CV (< or = m/s) and fast-CV (> 10 m/s) groups. 4. Histamine significantly facilitated the heat responses of the slow-CV group from 10 microM, and also facilitated the fast-CV group from 100 microM. This sensitizing effect was observed irrespective of the precedent histamine-induced excitation. The magnitude of sensitization tended to increase with an increase in histamine concentration. 5. For studying the histamine receptor subtype involved in excitation and facilitation, we used D-chlorpheniramine maleate (5 microM) (an H1 receptor antagonist), famotidine (20 microM) (an H2 receptor antagonist), and thioperamide maleate (20 microM) (an H3 receptor antagonist). The magnitude of histamine-induced excitation of the slow-CV group was significantly suppressed by the H1 receptor antagonist but not by other antagonists. 6. The facilitatory effect of histamine on the heat response was also suppressed by the H1 receptor antagonist in both slow- and fast-CV groups. 7. These results strongly suggested that both excitation and facilitation of the heat response induced by histamine are mediated through the H1 receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.