The satellite DNA (SATELLITE III) which is mainly represented in the female of Elaphe radiata (Ophidia, Colubridae) has been isolated and its buoyant density has been determined (delta equals 1.700 g cm-3). In situ hybridisation of radioactive complementary RNA of this satellite DNA with the chromosomes of different species has revealed that it is mainly concentrated on the W sex chromosome and its sequences are conserved throughout the sub-order Ophidia. From hybridisation studies these sequences are absent from the primitive family Boidae which represents a primitive state of differentiation of sex chromosomes. Chromosome analysis and C-banding have also revealed the absence of heteromorphism and of an entirely heterochromatic chromosome in the species belonging to the primitive family and their presence in the species of highly evolved families. It is suggested that the origin of satellite DNA (satellite III) in the W chromosome is the first step in differentiation of W from the Z in snakes by generating asynchrony in the DNA replication pattern of Z and W chromosomes and thus conceivably reducing the frequency of crossing-over between them which is the prerequisite of differentiation of sex chromosomes. Presence of similar sex chromosome associated satellite DNA in domestic chicken suggests its existence in a wider range of vertebrates than just the snakes.
In situ hybridisation of certain AT rich and GC rich satellite DNA complementary RNAs (cRNAs) to their homologous chromosomes at their respective optimal rate temperatures (TOPTS) after denaturation with various reagents (0.2 N HCl, 0.07 N NaOH, 90% formamide and heat) led to the following conclusions. -- Heat denaturation of chromosomal DNA in 0.1 X SSC at 100 degrees C gives significantly higher grain counts regardless of DNA base composition, HCl denaturation discriminates markedly against GC rich DNA. Chromosome morphology is best preserved after HCl and heat denaturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.