Field experiments were conducted in Lake Balaton, a large (surface area, 600 km2) but shallow (mean depth, 3.2 m) lake in Hungary, to quantify the resuspension and deposition of bottom sediment due to episodic storm events. Measurements were made of windspeed and direction, surface waves, mean water velocity, and suspended sediment concentration.During significant wind events, the computed bottom stress due to surface waves dominated that due to the mean current, and therefore surface waves were assumed to be the major cause of sediment resuspension. A simple model for the depth-averaged suspended sediment concentration based on surface wave height was calibrated with about 10 h of data collected during one storm event and verified against 15 d of data collected at the same site. The success of the suspended sediment model, which assumes that the bottom sediment was noncohesive, is surprising since the bottom material was composed predominantly of sediment in the clay and fine-silt size ranges. This fit may indicate the presence of a thin surface layer of loosely bound sediment that is continuously involved in resuspension. The suspended sediment model could easily be integrated into a water quality model (e.g. to predict light attenuation), provided that lateral transport is negligible, or it could be used to provide the bottom boundary condition for a more general suspended sediment transport model in which advective transport is included.Due to their small fall velocities, finegrained particles (i.e. those in the silt and clay size ranges) are transported easily by flows. An understanding of the dynamic behavior of these particles is particularly important in shallow lakes and estuaries since there they may repeatedly settle to the bot-
In this paper, biochemical process equations are presented as a basis for water quality modelling in rivers under aerobic and anoxic conditions. These equations are not new, but they summarise parts of the development over the past 75 years. The primary goals of the presentation are to stimulate communication among modellers and field-oriented researchers of river water quality and of wastewater treatment, to facilitate practical application of river water quality modelling, and to encourage the use of elemental mass balances for the derivation of stoichiometric coefficients of biochemical transformation processes. This paper is part of a series of three papers. In the first paper, the general modelling approach is described; in the present paper, the biochemical process equations of a complex model are presented; and in the third paper, recommendations are given for the selection of a reasonable submodel for a specific application.
River water quality models are used extensively in research as well as in the design and assessment of water quality management measures. The application of mathematical models for that purpose dates back to the initial studies of oxygen depletion due to organic waste pollution. Since then, models have been constantly refined and updated to meet new and emerging problems of surface water pollution, such as eutrophication, acute and chronic toxicity, etc. In order to handle the complex interactions caused by the increased influence of human activities in rivers it is today mandatory to couple river water quality models with models describing emissions from the drainage and sewerage system (such as the IAWQ Activated Sludge model No. 1). In this paper-which is the first of a three-part series by the IAWQ Task Group on River Water Quality Modelling-the state of the art is summarized with the above aim in mind. Special attention is given here to the modelling of conversion processes but also the methods and tools to work with the models, i.e. parameter estimation, measurement campaign design, and simulation software, are discussed.
The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover, QUAL2E and similar models do not address a number of practical problems such as stormwater flow events, nonpoint source pollution, and transient streamflow. Limitations in model formulation affect the ability to close mass balances, to represent sessile bacteria and other benthic processes, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.