International audienceWe present a numerically complete study of the combined dynamics of a quantum dot exciton coupled to a single quantized cavity mode and a continuum of acoustic phonons. We demonstrate that acoustic phonons have a pronounced impact on effects characteristic of the strong light-matter coupling regime, such as vacuum Rabi oscillations and collapse and revival scenarios. This impact is considerable already at zero temperature, where initially no phonons are present. Counterintuitively it is found that an increase of the light-matter coupling does not necessarily enhance the visibility of strong-coupling effects. In fact, for typical experimental situations, a stronger light-matter coupling will considerably reduce the visibility
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.