Modelling and analysis of a rotor--bearing system with a new type of active oil bearing is presented. The active bearing is supplied with a flexible sleeve whose deformation can be changed during operation of the rotor. The flexible sleeve is also a part of a hydraulic damper whose parameters can be controlled during operation as well.Finite Element Method (FEM) and the Guyan condensation technique was utilised to create mathematical model of both, the rotor and the flexible sleeve. The hydrodynamic pressure distribution in the oil film, for the instantaneous position of the flexible sleeve and rotor, was approximated by Reynolds equation.The mathematical model of motion of a rotor system with the described active bearing developed in this paper allowed the influence of the introduced hydraulic damper on stability of the rotor-bearing system to be investigated. Results of the computer simulation shows that within a large region of configuration parameters of the rotor bearing system, the self exciting vibration can be eliminated or greatly reduced during operation by properly controlled deformation of the flexible sleeve and optimal choice of the hydraulic damper parameters.
This paper describes the usage of Hardware-In-the-Loop technologies at Ford Motor Company for the development of hybrid vehicle cars. At the heart of these HIL tests are models of electric motor drives. Several challenges exist in executing these models in real-time, especially in faulty or uncontrolled modes. This paper describes the key features of these drive models, as well as examples of HIL tests conducted with these models by Ford Motor Company.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.