D-Serine is a co-agonist at the NMDA receptor glycine-binding site. Early studies have emphasized a glial localization for D-serine. However the nature of the glial cells has not been fully resolved, because previous D-serine antibodies needed glutaraldehyde-fixation, precluding co-localization with fixation-sensitive antigens. We have raised a new D-serine antibody optimized for formaldehyde-fixation. Light and electron microscopic observations indicated that D-serine was concentrated into vesicle-like compartments in astrocytes and radial glial cells, rather than being distributed uniformly in the cytoplasm. In aged animals, patches of cortex and hippocampus were devoid of immunolabeling for D-serine, suggesting that impaired glial modulation of forebrain glutamatergic signaling might occur. Dual immunofluorescence labeling for glutamate and D-serine revealed D-serine in a subset of glutamatergic neurons, particularly in brainstem regions and in the olfactory bulbs. Microglia also contain D-serine. We suggest that some D-serine may be derived from the periphery. Collectively, our data suggest that the cellular compartmentation and distribution of D-serine may be more complex and extensive than previously thought and may have significant implications for our understanding of the role of D-serine in disease states including hypoxia and schizophrenia.
The induction of GLT-1c expression by retinal ganglion cells supports the notion that an anomaly or anomalies in glutamate homeostasis may be evident in glaucoma and that such anomalies selectively influence retinal ganglion cells. By analogy to in vitro experiments in which elevated glutamate levels induce expression of glutamate transporters, the authors hypothesize that expression of GLT-1c may represent an attempt by retinal ganglion cells to protect themselves against elevated levels of glutamate. Such anomalies in glutamate levels cannot be restricted to the ganglion cell layer, as this would not have affected displaced ganglion cells. GLT-1c may be a useful indicator of the extent of stress of the retinal ganglion cells and thus a tool for examining outcomes of potential therapeutic and experimental interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.