In organic soil fertility management, rock phosphate (RP) is gaining momentum as an acceptable phosphorus source, though much of this P is not bioavailable for plant uptake, particularly in igneous RP. This study evaluated the nutrient solubilization, biodegradation and heavy metal concentration when cow dung – waste paper mixture amended with increasing rates of igneous RP was vermicomposted with E. fetida. The cow dung was optimized to a C/N ratio of 30 using waste paper and amended with RP to provide 0%; 2%; 4% and 8% of elemental phosphorus on a dry w/w basis. Incorporation of RP at 2% and 8% P enhanced compost biodegradation resulting in a 12% and 22% significantly (P < 0.001) lower final C/N ratio, respectively, compared to the control; together with higher humification parameters. Amending the cow dung – waste paper mixture with 2%, 4% and 8% P as rock phosphate, resulted in a 39%; 50% and 65% more resin extractable P, respectively, relative to the control. Similarly, the bicarbonate extractable P, which represents the bioavailable P fraction, increased consistently by 19%; 28% and 33% following 2%, 4% and 8% RP application, respectively. Though incorporation of RP initially resulted in increased heavy metal levels, reductions of 40%; 35%; 35%; 40% and 45% for Cr, Cu, Cd, Pb and Zn, respectively, were observed in the 8% RP treatment after 8 weeks, due to the presence of earthworms. Vermicomposting with E. fetida significantly reduced heavy metals to levels below the maximum permissible concentration of potentially toxic elements in soils after 8 weeks. This study demonstrates the potential of optimized vermicomposting with igneous RP for generating nutrient rich organic fertilizers.
Thermophilic composting is being promoted as a means of sanitizing waste materials prior to vermicomposting. The precomposting duration is, however, critical to the success of the vermicomposting phase as it affects worm biomass. This study evaluated the effectiveness of different precomposting periods (0, 1, 2, 3 and 4 weeks) on the sanitization and vermicomposting of dairy manure-waste paper mixtures. The parameters measured were coliform bacteria and protozoa oocyst numbers, earthworm growth, as well as stabilization and nutrient content of vermicomposts. Over 95% of fecal coliforms, Escherichia coli and of E. coli 0157 were eliminated from the waste materials within 1 week of precomposting and total elimination of these and protozoan oocysts was achieved after 3 weeks of precomposting. Microbial biomass carbon and water soluble carbon of waste mixtures decreased with increase in precomposting time and impacted negatively on earthworm growth and subsequent stabilization of the dairy manure-paper waste mixtures. Vermicomposts from waste mixtures precomposted for over 2 weeks were less stabilized, less humified and had lower nutrient contents than vermicomposts from waste mixtures precomposted for 1 week or less. A precomposting period of 1 week was found to be ideal for the effective vermicomposting of dairy manure-waste paper mixtures.
Pine bark compost is the medium of choice for seedling growers in South Africa due to its availability, low cost and good physical properties. However, it is acidic, has low electrical conductivity (EC) and nutrient content such that fortification and liming is necessary. In a bid to improve the properties of pine bark compost, at a low cost, pine bark was co-composted with goat manure (PBG), and compared with commercial pine bark compost (PBCO) as a growing medium for vegetable amaranth, cabbage, tomato, and lettuce seedlings with and without Horticote (a slow release fertiliser). The water holding capacities of both PBCO and PBG media were higher than the minimum required but their air filled porosities were below optimum. Neither medium nor fertiliser levels had an effect on emergence of all the test crops. The different vegetable seedlings grew better in PBG than the PBCO medium. Addition of the slow-release fertiliser had similar positive effects on growth of seedlings grown on both media. Significant interactions between fertiliser and growing medium were observed in fresh weights of shoots for all the seedling crops evaluated. Results of this study revealed that PBG medium supported good seedling growth and could thus be a good substitute for PBCO as a growing medium. Use of a slow release fertiliser is highly encouraged as this can lower both nutrient losses through leaching and production costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.