Pollen allergies are responsible for a considerable global public health burden, and understanding exposure is critical to addressing the health impacts. Atmospheric pollen counts are routinely used as a predictor of risk; however, immune responses are triggered by specific proteins known as allergens, which occur both within and on the surface of the pollen grain. The ratio between atmospheric pollen counts and allergen concentrations (‘pollen potency’) has been shown to be inconsistent, with potentially important implications for pollen monitoring practice. Despite this, there has been no previous synthesis of the literature and our understanding of the factors that influence pollen potency remains poor. We conducted a scoping review with the aim of deriving a current understanding of: (a) the factors that influence pollen potency; (b) its variation through time, between taxa and by location; and (c) the implications for pollen monitoring practice. Our synthesis found that pollen potency is highly variable within and between seasons, and between locations; however, much of this variability remains unexplained and has not been deeply investigated. We found no predictable pollen potency patterns relating to taxon, geography or time, and inconclusive evidence regarding possible driving factors. With respect to human health, the studies in our synthesis generally reported larger associations between atmospheric allergen loads and allergy symptoms than whole pollen counts. This suggests that pollen potency influences public health risk; however, the evidence base remains limited. Further research is needed to better understand both pollen potency variability and its implications for health.
The Lactifluus clarkeae complex is a commonly observed, generally brightly coloured, group of mushrooms that are usually associated with Nothofagus or Myrtaceous hosts in Australia and New Zealand. For this study collections labelled as ‘Lactarius clarkeae’, ‘Russula flocktoniae’ and ‘Lactarius subclarkeae’ were examined morphologically and molecularly. Analyses of molecular data showed a high cryptic diversity, with sequences scattered across 11 clades in three subgenera within Lactifluus, and a single collection in Russula. We select epitypes to anchor the currently accepted concepts of Lf. clarkeae s.str. and Lf. flocktoniae s.str. The name Lf. subclarkeae could not be applied to any of the collections examined, as none had a lamprotrichoderm pileipellis. Lactifluus clarkeae var. aurantioruber is raised to species level, and six new species are described, three in subg. Lactifluus: Lf. jetiae, Lf. pagodicystidiatus, and Lf. rugulostipitatus, and three in subg. Gymnocarpi: Lf. albens, Lf. psammophilus, and Lf. pseudoflocktoniae. A new collection of Lf. russulisporus provides a significant range extension for the species. Untangling this complex will enable better identification of species and increase understanding of diversity and specific habitat associations of macrofungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.