Large‐scale global adoption of carbon capture and storage (CCS) as a means of minimizing atmospheric CO2 emissions requires an unprecedented effort to store gigatons of anthropogenic emissions in the earth's subsurface. Critical to the adoption and ultimate success of CCS is the protection of valuable water resources that may be impacted by leaking CO2 from CCS operations. Therefore, appropriate technical tools and societal controls will need to be developed and evaluated to maximize the atmospheric benefits of CCS while limiting potential deleterious effects of its implementation. Here, we utilize a naturally leaking CO2 system located at Soda Springs, Idaho, USA, as an analogue for industrial‐scale CCS deployment. This site is particularly relevant and useful for studying the consequences of CCS because it allows the examination of geologic systems at temporal and spatial scales not accessible by laboratory and field experiments. The Soda Springs system is an ideal CCS natural analogue site with the source of CO2 occurring at depths and temperatures expected for large‐scale CCS systems. Soda Springs also provides long‐term examples of at least three potential failure modes for CCS systems, including direct migration of CO2 charged brine to the surface via faulting or wells, upward movement of CO2 from the injection‐horizon into over lying shallow aquifers, and the displacement of reservoir brine into shallower aquifers. These failure mechanisms were differentiated and characterized utilizing variations in water chemistry including rare earth elements providing a framework for delineating the movement of CO2‐influenced fluids migrating from deep CCS reservoirs into overlying aquifers. © 2020 Society of Chemical Industry and John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.