Magnetic susceptibility and EPR studies show that trinuclear Cu(II)-pyrazolato complexes with a Cu(3)(mu3-X)2 core (X = Cl, Br) are ferromagnetically coupled: J(Cu-Cu) = +28.6 cm(-1) (X = Cl), +3.1 cm(-1) (X = Br). The orderly transition from an antiferromagnetic to a ferromagnetic exchange among the Cu centers of Cu(3)(mu3-X) complexes, X = O, OH, Cl, Br, follows the change of the Cu-X-Cu angle from 120 degrees to approximately 80 degrees. The crystal structures of [Bu4N]2"[Cu3(mu3-Br)2(mu-pz*)3Br3] (pz* = pz (1a) or 4-O2N-pz (1b), pz = pyrazolato anion, C(3)H(3)N(2)(1-)) are presented.
A comparison set of mono-/biradical TEMPO derivatives was prepared, novel compounds were fully characterized, and their physicochemical properties were determined. Cyclic voltammetry revealed reversible redox behavior for all studied nitroxides. Moreover, the electron-withdrawing substituents increased the oxidation potential of the respective nitroxides in comparison to electron-donating groups. While EPR spectra of monoradicals in dichloromethane at 295 K reveal the expected three-line signal, spectra of biradicals show more complex features. DFT and MP2 calculations indicate that the EPR splitting pattern of dinitroxide 7 could be explained by its interactions with solvent molecules. In the solid state, mononitroxides 4 and 5 behave as a Heisenberg antiferromagnetic chain, whereas dinitroxides 6-8 are almost isolated paramagnetic diradicals coupled in an antiferromagnetic manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.