The method of parallelizing a numerical solution of the complete system of Navier - Stokes equations is used to describe three-dimensional unsteady flows of a viscous compressible heat-conducting gas in ascending swirling flows. In this case, the action of gravity and Coriolis forces is taken into account, the coefficients of viscosity and thermal conductivity are assumed to be constant. The results of numerical calculations of the thermodynamic characteristics of flows on smaller computational grids are presented in simulation of the output to the stationary mode of an ascending swirling air flow in an artificially created tornado. We numerically determined the values of density, temperature, and pressure for various fixed times and for different heights of the calculated region. The research shows that in the process of accelerating the gas flow in the center of vertical region a funnel-shaped region with reduced values of density, temperature, and pressure is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.