Artificial neural network (ANN) modeling of heat transfer from horizontal tube bundles immersed in gas fluidized bed of large particles (mustard, raagi and bajara) was investigated. The effect of fluidizing gas velocity on the heat transfer coefficient in the immersed tube bundles in in-line and staggered arrangement is discussed. The parameters particle diameter, temperature difference between bed and immersed surface were used in the neural network (NN) modeling along with fluidizing velocity. The feed-forward network with back propagation structure implemented using Levenberg–Marquardt's learning rule in the NN approach. The predictions of the ANN were found to be in good agreement with the experiment's values, as well as the results achieved by the developed correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.