Molecularly imprinted polymer membranes for a model compound, atrazine, were prepared in situ from a monomer mixture containing methacrylic acid, tri(ethylene glycol) dimethacrylate, and atrazine using UV-initiated polymerization. To improve flexibility and mechanical stability of these membranes, oligourethane acrylate was added to the mixture of monomers. Polymeric additives were used to increase porosity of membranes and their permeability as well as to make them suited for filtration experiments. This process resulted in the formation of thin, flexible, and porous membranes containing atrazine-specific binding sites. The atrazine-imprinted membranes showed higher affinity to this herbicide than to structurally similar compounds (simazine, prometryn, and metribuzin). The binding capacity of MIP membranes was found to be significantly higher than that observed previously for MIP systems. The high affinity, specificity, and binding capacity of MIP membranes, together with their straightforward and easy preparation, provide a good basis for their application in separation and purification, e.g., in membrane chromatography.
The thermodynamic miscibility and thermal and dynamic mechanical behaviour of semi‐interpenetrating polymer networks (semi‐IPNs) of crosslinked polyurethane (PU) and linear poly(hydroxyethyl methacrylate) (PHEMA) have been investigated. The free energies of mixing of the semi‐IPN components have been determined by the vapour sorption method and it was established that the parameters are positive and depend on the amount of PHEMA in the semi‐IPN samples. Thermal analyses glass transition temperatures evidenced two in the semi‐IPNs in accordance with the investigation of the thermodynamic miscibility of these systems. Dynamic mechanical analysis revealed a pronounced change in the viscoelastic properties of the PU‐based semi‐IPNs with different amounts of PHEMA in the samples. The semi‐IPNs have two distinct tan δ maxima related to the relaxations of the two polymers in their glass temperature domains. The temperature position of PU relaxation maximum tan δ is invariable but its amplitude decreases in the semi‐IPNs with increasing amount of PHEMA in the systems. The tan δ maximum of PHEMA is shifted to a lower temperature and its amplitude decreases with increasing amount of PU in the semi‐IPNs. The segregation degree of components α was calculated using the viscoelastic properties of semi‐IPNs. It was concluded that the studied semi‐IPNs are two‐phase systems with incomplete phase separation. The different levels of immiscibility lead to the different degree of phase separation in the semi‐IPNs with compositions. Copyright © 2004 Society of Chemical Industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.