A comparative study of secondary specificities of enteropeptidase and trypsin was performed using peptide substrates with general formula A-(Asp/Glu)n-Lys(Arg)-(downward arrow)-B, where n = 1-4. This was the first study to demonstrate that, similar to other serine proteases, enteropeptidase has an extended secondary binding site interacting with 6-7 amino acid residues surrounding the peptide bond to be hydrolyzed. However, in the case of typical enteropeptidase substrates containing four negatively charged Asp/Glu residues at positions P2-P5, electrostatic interaction between these residues and the secondary site Lys99 of the enteropeptidase light chain is the main factor that determines hydrolysis efficiency. The secondary specificity of enteropeptidase differs from the secondary specificity of trypsin. The chromophoric synthetic enteropeptidase substrate G5DK-F(NO2)G (kcat/Km = 2380 mM(-1) x min(-1)) is more efficient than the fusion protein PrAD4K-P26 (kcat/Km = 1260 mM(-1) x min(-1)).
The three-dimensional structure of the Fab fragment of a monoclonal antibody (LNKB-2) to human interleukin-2 (IL-2) complexed with a synthetic antigenic nonapeptide, Ac-Lys-Pro-Leu-Glu-Glu-Val-Leu-AsnLeu-OMe, has been determined at 3.0 Å resolution. In the structure, four out of the six hypervariable loops of the Fab (complementarity determining regions [CDRs] L1, H1, H2, and H3) are involved in peptide association through hydrogen bonding, salt bridge formation, and hydrophobic interactions. The Tyr residues in the Fab antigen binding site play a major role in antigen-antibody recognition. The structures of the complexed and uncomplexed Fab were compared. In the antigen binding site the CDR-L1 loop of the antibody shows the largest structural changes upon peptide binding. The peptide adopts a mostly ␣-helical conformation similar to that in the epitope fragment 64-72 of the IL-2 antigen. The side chains of residues Leu 66, Val 69, and Leu 70, which are shielded internally in the IL-2 structure, are involved in interactions with the Fab in the complex studied. This indicates that antibody-antigen complexation involves a significant rearrangement of the epitope-containing region of the IL-2 with retention of the ␣-helical character of the epitope fragment.Keywords: Monoclonal antibody; Fab-antigen binding fragment; interleukin-2 antigen; antibody-antigen interaction; three-dimensional structure; X-ray analysis Monoclonal antibodies are used widely in biomedical research because of their stereochemical complementarity to specific antigens. Determination of the structural basis of antibody-antigen specificity is important to understanding the mechanism of immune recognition and the rational design of pharmacological agents, synthetic vaccines, and antibodies with novel selectivities. Some aspects of the recognition process remain unclear. The determination of the X-ray crystal structures of a number of unliganded antibodies, isolated antigens, and their complexes has advanced understanding of the nature of antibody-protein-antigen interactions (see selected references:
Electron-transfer dissociation (ETD) and electron-transfer and higher-energy collision dissociation (EThcD) spectra of short tryptic peptides with leucine/isoleucine residues in neighboring positions demonstrate intensive w-ions. On the contrary, u-ions possess very low intensities (if present at all). Therefore radical site migration is negligible in the applied conditions while ETD (EThcD) spectra allow for the reliable discrimination of the isomeric residues in the sequencing process. The presence of a fragment ion 43.055 mass units lower than z-ion of peptides with IK sequence at their C-termini was shown to be a result of alternative fragmentation starting from the loss of propylammonium ion from the doubly protonated peptide molecule and formation of an oxazole fragment ion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.