<span>Deep learning (DL) <span>has become a topic of study in various applications, including healthcare. Detection of abnormalities in an electrocardiogram (ECG) plays a significant role in patient monitoring. It is noted that a deep neural network when trained on huge data, can easily detect cardiac arrhythmia. This may help cardiologists to start treatment as early as possible. This paper proposes a new deep learning model adapting the concept of transfer learning to extract deep-CNN features and facilitates automated classification of electrocardiogram (ECG) into sixteen types of ECG beats using an optimized support vector machine (SVM). The proposed strategy begins with gathering ECG datasets, removal of noise from ECG signals, and extracting beats from denoised ECG signals. Feature extraction is done using ResNet18 via concept of transfer learning. These extracted features are classified using optimized SVM. These methods are evaluated and tested on the MIT-BIH arrhythmia database. Our proposed model is effective compared to all State of Art Techniques with an accuracy of 98.70%.</span></span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.