Infections caused by resistant microorganisms often fail to respond to conventional therapy, resulting in prolonged illness, increased treatment costs and greater risk of death. Consequently, the development of novel antimicrobial drugs is becoming more demanding every day since the existing drugs either have too many side-effects or they tend to lose effectiveness due to the selection of resistant strains. In view of these facts, a number of new strategies to obstruct vital biological processes of a microbial cell have emerged; one of these is focused on the use of metal-chelating agents, which are able to selectively disturb the essential metal metabolism of the microorganism by interfering with metal acquisition and bioavailability for crucial reactions. The chelation activity is able to inhibit the biological role of metal-dependent proteins (e.g., metalloproteases and transcription factors), disturbing the microbial cell homeostasis and culminating in the blockage of microbial nutrition, growth and development, cellular differentiation, adhesion to biotic (e.g., extracellular matrix components, cell and/or tissue) and abiotic (e.g., plastic, silicone and acrylic) structures as well as controlling the in vivo infection progression. Interestingly, chelating agents also potentiate the activity of classical antimicrobial compounds. The differences between the microorganism and host in terms of the behavior displayed in the presence of chelating agents could provide exploitable targets for the development of an effective chemotherapy for these diseases. Consequently, metal chelators represent a novel group of antimicrobial agents with potential therapeutic applications. This review will focus on the anti-fungal and anti-protozoan action of the most common chelating agents, deciphering and discussing their mode of action.
Humoral immune responses are dysregulated with aging but details remain incompletely understood. In particular, little is known about the effects of aging on T follicular helper (Tfh) CD4 cells, the subset that provides critical help to B cells for effective humoral immunity. We previously demonstrated that influenza vaccination increases a circulating Tfh (cTfh) subset that expresses ICOS and CD38, contains influenza-specific memory cells, and is correlated with antibody responses. To directly study the effects of aging on the cTfh response, we performed transcriptional profiling and cellular analysis before and after influenza vaccination in young and elderly adults. Several key differences in cTfh responses were revealed in the elderly. First, whole blood transcriptional profiling defined cross-validated genesets of youth versus aging and these genesets were, compared to other T cells, preferentially enriched in ICOS+CD38+ cTfh from young and elderly subjects, respectively, following vaccination. Second, vaccine-induced ICOS+CD38+ cTfh from the elderly were enriched for transcriptional signatures of inflammation including TNF-NFkB pathway activation. Indeed, we reveal a paradoxical positive effect of TNF signaling on Tfh providing help to B cells linked to survival circuits that may explain detrimental effects of TNF blockade on vaccine responses. Finally, vaccine-induced ICOS+CD38+ cTfh displayed strong enrichment for signatures of underlying age-associated biological changes.Thus, these data reveal key biological changes in cTfh during aging and also demonstrate the sensitivity of vaccine-induced cTfh to underlying changes in host physiology. This latter observation suggests that vaccine-induced cTfh could function as sensitive biosensors of underlying inflammatory and/or overall immune health. Main Text:Influenza vaccination induces strain-specific neutralizing antibodies in healthy adults, but this process is impaired with aging (1-4). Moreover, immunological aging, that may or may not be directly linked to chronological aging, is also associated with increased morbidity and mortality from infectious diseases (5,6). Studies of immunological aging and vaccines have identified mechanisms including alterations at the subcellular (7, 8), cellular (9, 10), and systems levels (11)(12)(13)(14) that lead to altered vaccine responses. Vaccination strategies that can effectively combat age-associated immune dysfunction are of great interest for rational vaccine design. Moreover, identifying strategies to define critical characteristics of overall immune fitness during aging would be of considerable utility for selecting appropriate immunological and other interventions for disease.The production of class-switched, affinity-matured antibody by B cells is dependent on help from T follicular helper (Tfh) cells in germinal centers (GC) in lymphoid tissues (15), but few studies have evaluated the effects of aging on the GC reaction and GC dependent cellular responses in humans. Suboptimal vaccine responses with aging ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.