We develop time-domain simulations of microwave and THz radiation sources built as arrays of active devices when the radiation wavelength is small as compared to spacing between electronic components. We pursue an approach when the system is represented by equations with time-delay feedback that could generate chaos and other forms of complicated dynamics. The approach simplifies simulations of ultra-wideband effects and exceeds capabilities of frequency-domain methods. As a model case, we simulated a microstrip circuit with Gunn diode and a remote resonator emitting the radiation towards infinity. We observed the emergence of either the continuous waves or the trains of high-frequency pulses depending on the bias conditions. We found bistability and hysteresis in the onset of different oscillation modes that depends on the way of driving the bias voltage into the domain of instability of the given system. The results would allow one to improve the design of THz radiation sources with time-delay coupling between components. C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.