We investigate the time and the energy minimum optimal solutions for the
robust control of two-level quantum systems against offset or control field
uncertainties. Using the Pontryagin Maximum Principle, we derive the global
optimal pulses for the first robustness orders. We show that the dimension of
the control landscape is lower or equal to 2N for a field robust to the N th
order, which leads to an estimate of its complexity.Comment: 30 pages, 15 figures, submitted to Phys. Rev.
The design of efficient and robust pulse sequences is a fundamental requirement in quantum control. Numerical methods can be used for this purpose, but with relatively little insight into the control mechanism. Here, we show that the free rotation of a classical rigid body plays a fundamental role in the control of two-level quantum systems by means of external electromagnetic pulses. For a state to state transfer, we derive a family of control fields depending upon two free parameters, which allow us to adjust the efficiency, the time and the robustness of the control process. As an illustrative example, we consider the quantum analog of the tennis racket effect, which is a geometric property of any classical rigid body. This effect is demonstrated experimentally for the control of a spin 1/2 particle by using techniques of Nuclear Magnetic Resonance. We also show that the dynamics of a rigid body can be used to implement one-qubit quantum gates. In particular, non-adiabatic geometric quantum phase gates can be realized based on the Montgomery phase of a rigid body. The robustness issue of the gates is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.