Breast reconstruction and augmentation are very common procedures, yet the prevailing current methods utilize silicone implants that may have significant local complications requiring reoperation. Lipofillling is increasingly used to contour and is considered safe, however, its utility is limited by significant volume loss. A new approach could offer an alternative and increase the scope of patient choice. A small number of teams around the world are investigating a breast tissue engineering (TE) paradigm. Conventional breast TE concepts are based on seeding a scaffold with the patients' own stem cells. However, the clinical viability of many of these approaches is limited by their costs in relevant volumes. In this article the state of the art of tissue-engineered breast reconstruction is reviewed and future perspectives are presented and discussed.
Advanced scaffolds used in tissue regenerating applications should be designed to address clinically relevant complications such as surgical site infection associated with surgical procedures. Recognizing that patient-specific scaffolds with local drug delivery capabilities are a promising approach, we combined 3D printing with traditional salt-leaching techniques to prepare a new type of scaffold with purposely designed macro- and micro-porosity. The dual macro/micro porous scaffolds of medical-grade polycaprolactone (mPCL) were characterized for their porosity, surface area, mechanical properties and degradation. The use of these scaffolds for local prophylactic release of Cefazolin to inhibit S. aureus growth was investigated as an example of drug delivery with this versatile platform. The introduction of microporosity and increased surface area allowed for loading of the scaffold using a simple drop-loading method of this heat-labile antibiotic and resulted in significant improvement in its release for up to 3 days. The Cefazolin released from scaffolds retained its bioactivity similar to that of fresh Cefazolin. There were no cytotoxic effects in vitro against 3 T3 fibroblasts at Cefazolin concentration of up to 100 μg/ml and no apparent effects on blood clot formation on the scaffolds in vitro. This study therefore presents a novel type of scaffolds with dual macro- and micro-porosity manufactured by a versatile method of 3D printing combined with salt-leaching. These scaffolds could be useful in tissue regeneration applications where it is desirable to prevent complications using local delivery of drugs.
Background and Objectives: The treatment of proximal humerus fractures in elderly patients is challenging, with reported high complication rates mostly related to implant failure involving screw cut-out and penetration. Metaphyseal defects are common in osteoporotic bone and weaken the osteosynthesis construct. A novel technique for augmentation with polymethylmethacrylate (PMMA) bone cement was developed for the treatment of patients in advanced age with complex proximal humerus fractures and metaphyseal voids, whereby the cement was allowed to partially cure for 5–7 min after mixing to achieve medium viscosity, and then it was manually placed into the defect through the traumatic lateral window with a volume of 4–6 mL per patient. The aim of this retrospective clinical study was to assess this technique versus autologous bone graft augmentation and no augmentation. Materials and Methods: The outcomes of 120 patients with plated Neer three- and four-part fractures, assigned to groups of 63 cases with no augmentation, 28 with bone graft augmentation and 29 with cement augmentation, were assessed in this study. DASH, CS, pain scores and range of motion were analyzed at 3, 6 and 12 months. Statistical analysis was performed with factors for treatment and age groups, Neer fracture types and follow-up periods, and with the consideration of age as a covariate. Results: DASH and CS improved following cement augmentation at three and six months compared to bone grafting, being significant when correcting for age as a covariate (p ≤ 0.007). While the age group had a significant effect on both these scores with worsened values at a higher age for non-augmented and grafted patients (p ≤ 0.044), this was not the case for cement augmented patients (p ≥ 0.128). Cement augmentation demonstrated good clinical results at 12 months with a mean DASH of 10.21 and mean CS percentage of 84.83% versus the contralateral side, not being significantly different among the techniques (p ≥ 0.372), despite the cement augmented group representing the older population with more four-part fractures. There were no concerning adverse events specifically related to the novel technique. Conclusions: This study has detailed a novel technique for the treatment of metaphyseal defects with PMMA cement augmentation in elderly patients with complex proximal humerus fractures and follow-up to one year, whereby the cement was allowed to partially cure to achieve medium viscosity, and then it was manually placed into the defect through the traumatic lateral window. The results demonstrate clinically equivalent short-term results to 6 months compared to augmentation with bone graft or no augmentation—despite the patient group being older and with a higher rate of more severe fracture patterns. The technique appears to be safe with no specifically related adverse events and can be added in the surgeon’s armamentarium for the treatment of these difficult to manage fractures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.