Recent techniques of radiofrequency (RF) probes and preamplifiers in Magnetic ResonanceImaging (MRI) developments almost reached the physical limits of signal to noise ratio (SNR). More improvements in speed accelerations of data acquisition are very difficult to achieve. One exception, called RF phased array coils, is recently being developed very progressively. The approach is conceptually similar to phased array used in radar techniques; hence it is usually called MRI phased array coils. It is necessary to ensure independence of the individual coil channels in the array by the coil and preamp decoupling and the coil geometry optimization to get maximum benefits from this technique. Thus, the qualitative design and method for optimization of geometric properties of the coil elements in phased arrays, with aim to increase SNR, minimize the G-factor and to limit noise correlation, are proposed in this paper. By the finite element method (FEM) simulations, we obtained the sensitivity maps and inductances of the coils. The introduced program primarily calculates the Sensitivity Encoding (SENSE) G-factor along with other parameters that can be derived from sensitivity maps. By the proposed optimization algorithm, the program is capable to calculate the optimal values of the geometric coil parameters in a relatively small number of iterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.