Abstract-An analytic solution to the problem of plane wave scattering by an achiral multilayered sphere in a host chiral medium is obtained in this paper. By applying the radiation-to-scattering transform, the scattering problem can be considered as the specific radiation problems where the radiated source equivalent to the electromagnetic plane wave is located at infinity. The volumetric currents which generate right circular polarization (RCP) and left circular polarization (LCP) plane waves, respectively, are found. An integral equation consisting the volumetric current distributions and the dyadic Green's functions is formulated to obtain both the equivalent incident wave fields and the scattered fields. Two-layered lossless and lossy dielectric spheres and a conducting sphere with a dielectric coated layer buried in an infinitely extended host chiral medium are considered and the expressions for the scattered fields in far-zone are found in explicit analytic form. The characteristics of scattered fields are illustrated and discussed in terms of the circular polarization degree and linear polarization degree against different chiral admittances and sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.