Tarski published his first geometry paper, [24b], in 1924. As is well known, the area of the union of two disjoint figures is the sum of the areas of these two figures. This observation is the basis of a method for proving that two figures, say A and B, have the same area: if we can divide each of the two figures A and B into a finite number of pairwise disjoint subfigures A1,…,An and B1,…,Bn such that for every i, figures Ai and Bi are congruent (we say that two such figures are equivalent by finite decomposition), then figures A and B have the same area. The method is by no means universal. For example a disc and a rectangle can never be equivalent by finite decomposition, even if they have the same area. Hilbert [1922, Kapitel IV] proved from his axiom system the so-called De Zolt axiom:If a polygon V is a proper subset of a polygon W then they are not equivalent by a finite decomposition.Hilbert's proof is elementary but difficult. In [24b] Tarski gave an easy but nonelementary proof of a stronger version of the De Zolt axiom:If a polygon V is a proper subset of a polygon W then they are not equivalent by finite decomposition into any figures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.