The previous studies found that chronic inflammation related to an increased risk of colorectal cancer (CRC). This study aims to explore the associations of polymorphisms in inflammation-related genes (IL10, IL10RA, IL6R, TNFRSF1A, TNFRSF1B, LTA and IL4) and their interactions with the risk of colorectal cancer among Chinese population. A population-based case-control study including 299 cases and 296 controls was conducted from January 2001 to December 2009. Multivariate unconditional logistic regression was used to analyse the association of nine SNPs in inflammation-related genes with the risk of CRC, colon cancer and rectal cancer, respectively. Generalized multifactor dimensionality reduction (GMDR) was implemented to explore the gene-gene interactions among all SNPs on CRC. A decreased risk of colorectal cancer in subjects with rs1800872 AC genotype of IL10 (OR = 0.643, 95%CI = 0.453, 0.912) or AC/CC genotype (OR = 0.636, 95%CI = 0.457, 0.885) was observed, compared with those with AA genotype. Meanwhile, similar associations were observed between rs1800872 and rectal cancer. Additionally, in rs1061624 of TNFRSF1B gene, AG genotype (OR=0.566; 95% CI= 0.362, 0.885) and AG/GG genotype (OR=0.638; 95% CI=0.420, 0.971) were significantly associated with a decreased risk of rectal cancer, respectively. Our findings indicated that mutants in IL10 and TNFRSF1B genes may change the CRC risk. However, there is no interaction between inflammation-related genes on CRC risk.
The basement membrane (BM) is an extracellular matrix associated with overlying cells and is important for proper tissue development, stability, and physiology. COL4A1 is the most abundant component of type IV collagen in the BM, and COL4A1 variants can present with variable phenotypes that might be related to cerebral palsy (CP). We postulated, therefore, that variations in the COL4A1 gene might play an important role in the etiology of CP. In this study, six single nucleotide polymorphisms (SNPs) in the COL4A1 gene were genotyped among 351 CP patients and 220 healthy controls from the Chinese Han population. Significant association was found for an association between CP and rs1961495 (allele: p = 0.008, odds ratio (OR) = 1.387, 95% confidence interval (CI) = 1.088-1.767) and rs1411040 (allele: p = 0.009, OR = 1.746, 95% CI = 1.148-2.656) SNPs of the COL4A1 gene. Multifactor dimensionality reduction analysis suggested that these SNPs had interactive effects on the risk of CP. This study is the first attempt to investigate the contribution of polymorphisms in the COL4A1 gene to the susceptibility of CP in a Chinese Han population. This study shows an association of the COL4A1 gene with CP and suggests a potential role of COL4A1 in the pathogenesis of CP.
With the stochastic Landau-Lifshitz-Gilbert (sLLG) equation, critical dynamic behaviors far from equilibrium or stationary around the order-disorder and pinning-depinning phase transitions in anisotropic magnetic films are investigated. From the dynamic relaxation with and without an external field, the Curie temperature and critical exponents of the order-disorder phase transition are accurately determined. For the pinning-depinning phase transition induced by quenched disorder, the nonstationary creep motion of domain wall activated by finite temperatures is simulated, and the thermal rounding exponent is extracted. The results show that the dynamic universality class of the sLLG equation is different from those of the Monte Carlo dynamics and quenched Edwards-Wilkinson equation, and it may lead to alternative understanding of experiments. The dynamic approach shows its great efficiency for the sLLG equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.