In this work, we investigate electromagnetohydrodynamic (EMHD) flow of Powell-Eyring fluid through a slit confinement. The approximate analytical solution and numerical result of EMHD velocity are obtained by using homotopy perturbation method and Chebyshev spectral method, respectively. The analytical solutions are found to be in good agreement with numerical results under the same conditions. The influences of Hartmann number Ha, electrical field strength parameter S, the Powell-Eyring fluid parameters γ and β on velocity are discussed in detail. It is found that the volume flow rate of Newtonian fluid is always larger than that of Powell-Eyring fluid. The results reveal the intricate interaction between EMHD effect and fluid rheology involving non-Newtonian fluid. Therefore, the results are useful in dealing with some non-Newtonian biomicrofluidic systems.
Floodplain habitats of the Xilin River in Inner Mongolia, China, were overgrazed by sheep and cattle until fencing of the floodplains was implemented in 2000. Carbon cycling of three plant communities of differing floodplain elevation after fencing showed that biomass in low-elevation wetlands increased fastest until reaching its maximum at 20 years in the future, while a slower increase in biomass existed in high-elevation and 'hummock' wetlands. Modelling and field experiments revealed differences between the three plant communities that were primarily attributed to different elevation levels and inundation periods. This study also determined the carbon sequestration capacity of the three floodplain wetland types (0.18 kg C m À2 year À1 in low-elevation wetlands, 0.09 kg C m À2 year À1 in high-elevation wetlands, and 0.05 kg C m À2 year À1 in hummock wetlands).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.