This paper reports a novel method to improve output power of a flapping airflow energy harvester by introducing flexible wing sections. The flapping airflow energy harvester consists of a cantilever beam structure with a wing at its free end. A bluff body is placed in front of the wing to induce aerodynamic instability that leads to up and down oscillation of the wing. By coupling transducers to the oscillating wing, electromagnetic in this case, electrical energy can be generated. In this research, instead of using a commonly used rigid wing, the proposed airflow energy harvester has flexible wing sections that are able to bend, thus reduce the aerodynamic resistance during the wing oscillation. Therefore, the overall mechanical damping can be reduced and output power of the proposed energy harvester is increased. It is found experimentally that the proposed method is able to improve energy harvester performance of flapping airflow energy harvesters under high airflow speeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.