A novel type of few-mode fiber, characterized by an inverse-parabolic graded-index profile, is proposed for the robust transmission of cylindrical vector modes as well as modes carrying quantized orbital angular momentum (OAM). Large effective index separations between vector modes (>2.1 × 10(-4)) are numerically calculated and experimentally confirmed in this fiber over the whole C-band, enabling transmission of OAM(+/-1,1) modes for distances up to 1.1 km. Simple design rules are provided for the optimization of the fiber parameters.
We demonstrate a six spatial-mode, wavelength-routing network interoperable with few-mode, coupled-multi-core, and single-mode fiber spans using a custom 57-port wavelength-selective switch configured for joint-switching of spatial-superchannels.
The reflectogram of a fiber grating is used to characterize vector modes of an optical fiber supporting orbital angular momentum states. All modes, with a minimal effective index separation around 10(-4), are simultaneously measured. OAM states are reflected by the FBG, along with a charge inversion, at the center wavelength of the Bragg reflection peak of the corresponding fiber vector mode.
Rupture of knitted polyester prostheses are probably an underestimated phenomenon. They may occur at specific areas of the graft. Further studies are required to determine whether all grafts of this type are at risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.