An overview of the physics of intrinsic torque is presented, with special emphasis on the phenomenology of intrinsic toroidal rotation in tokamaks, its theoretical understanding, and the variety of momentum transport bifurcation dynamics. Ohmic reversals and ECH-driven counter torque are discussed in some detail. Symmetry breaking by LSN vs. USN asymmetry is related to the origin of intrinsic torque at the separatrix.
Abstract:The first comprehensive measurements of plasma flows and fluctuations nearby static magnetic islands driven by resonant magnetic perturbations (RMPs) are presented.These experiments were performed using multiple Langmuir probe arrays in the edge plasmas of the J-TEXT tokamak. The effects of controlled variations of the island size and location are explored. This study aims to understand the interaction between turbulence and magnetic islands, and to elucidate magnetic island effects on edge turbulence and flow intensity profiles, edge electric fields, and thus confinement regime transitions. Turbulence and low frequency flows (LFFs) all drop inside the magnetic island, but increase at its boundary, as island width increases. The geodesic acoustic mode (GAM) is damped in most of the edge area with magnetic islands. The sign of the radial electric field changes from negative to positive within 2 the islands. The gradient of turbulent stresses vanishes at island center, and becomes steeper at the boundary of the islands. The particle transport induced by the turbulence is reduced inside the magnetic islands. The magnetic island effects on flows and turbulence can lead to an increase in LFFs and enhance Reynolds stresses near the last closed flux surface (LCFS). A stronger radial electric field layer can be formed near the LCFS when magnetic islands are present. The results suggest that magnetic islands can be used as a tool to enhance edge turbulence and flows, edge electric fields, and thus to trigger confinement regime transitions.
We discuss theoretical progress in turbulent transport modelling in tokamaks. In particular, we address issues that the conventional quasilinear type calculation cannot confront, such as (i) the nature of turbulence in the edge-core coupling region of tokamaks (i.e. the so-called ‘no man’s land'), and the dynamics of incoming structures coupled to zonal flows, (ii) nonlinear dynamics of zonal flows and (iii) transport by drift wave turbulence with strong wave–particle interaction. A unifying theme of these studies is their formulation in terms of the phase space density correlation evolution.
The temporal-spatial structures of plasma flows and turbulence around tearing mode islands are presented. The experiments were performed using Langmuir probe arrays in the edge plasmas of J-TEXT tokamak. The correlation analyses clearly show that the flows have similar structures of m/n=3/1 as the magnetic island does (m and n are the poloidal and toroidal mode numbers, respectively). The sign of the potential fluctuations for the flows inverses and the powers significantly reduce at q=3 surface. Approaching to the last closed flux surface for the magnetic islands, the radially 2 elongated flow structure forms. The flows are concentrated near separatrix and show quadrupole structures. The turbulence is concentrated near X-point and partly trapped inside the magnetic islands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.