Mouse embryonic fibroblast (MEF) cells prepared from transgenic mice overexpressing a cancer-specific and growth-related cell surface NADH oxidase with protein disulfide-thiol interchange activity grew at rates approximately twice those of wild-type embryonic fibroblast cells. Growth of transgenic MEF cells overexpressing tNOX was inhibited by low concentrations of the green tea catechin (-)-epigallocatechin-3-gallate (EGCg) or the synthetic isoflavene phenoxodiol. Both are putative tNOX-targeted inhibitors with anti-cancer activity. With both EGCg and phenoxodiol, growth inhibition was followed after about 48 h by apoptosis. Growth of wild-type mouse fibroblast cells from the same strain was unaffected by EGCg and phenoxodiol and neither compound induced apoptosis even at concentrations 100-1,000-fold higher than those that resulted in apoptotic death in the transgenic MEF cells. The findings validate earlier reports of evidence for tNOX presence as contributing to unregulated growth of cancer cells as well as the previous identification of the tNOX protein as the molecular target for the anti-cancer activities attributed to both EGCg and phenoxodiol. The expression of tNOX emerges as both necessary and sufficient to account for the cancer cell-specific growth inhibitions by both EGCg and phenoxodiol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.