In recent years, artificial neural networks have attracted considerable attention as candidates for novel computational systems. Computer scientists and engineers are developing neural networks as representational and computational models for problem solving: neural networks are expected to produce new solutions or alternatives to existing models. This paper demonstrates the flexibility of neural networks for modeling and solving diverse mathematical problems including Taylor series expansion, Weierstrass's first approximation theorem, linear programming with single and multiple objectives, and fuzzy mathematical programming. Neural network representations of such mathematical problems may make it possible to overcome existing limitations, to find new solutions or alternatives to existing models, and to achieve synergistic effects through hybridization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.